Ann Oncol 2019 Feb 01
Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge.   
ABSTRACT
BACKGROUND
Colorectal cancer (CRC) has been shown to acquire RAS and EGFR ectodomain mutations as mechanisms of resistance to epidermal growth factor receptor (EGFR) inhibition (anti-EGFR). After anti-EGFR withdrawal, RAS and EGFR mutant clones lack a growth advantage relative to other clones and decay; however, the kinetics of decay remain unclear. We sought to determine the kinetics of acquired RAS/EGFR mutations after discontinuation of anti-EGFR therapy.
PATIENTS AND METHODS
We present the post-progression circulating tumor DNA (ctDNA) profiles of 135 patients with RAS/BRAF wild-type metastatic CRC treated with anti-EGFR who acquired RAS and/or EGFR mutations during therapy. Our validation cohort consisted of an external dataset of 73 patients with a ctDNA profile suggestive of prior anti-EGFR exposure and serial sampling. A separate retrospective cohort of 80 patients was used to evaluate overall response rate and progression free survival during re-challenge therapies.
RESULTS
Our analysis showed that RAS and EGFR relative mutant allele frequency decays exponentially (r2=0.93 for RAS; r2=0.94 for EGFR) with a cumulative half-life of 4.4 months. We validated our findings using an external dataset of 73 patients with a ctDNA profile suggestive of prior anti-EGFR exposure and serial sampling, confirming exponential decay with an estimated half-life of 4.3 months. A separate retrospective cohort of 80 patients showed that patients had a higher overall response rate during re-challenge therapies after increasing time intervals, as predicted by our model.
CONCLUSION
These results provide scientific support for anti-EGFR re-challenge and guide the optimal timing of re-challenge initiation.

Related Questions

Would sidedness matter? Do you use ctDNA assays to evaluate for acquired RAS mutations to guide this decision?