BACKGROUND
Testing for carcino-embryonic antigen (CEA) in the blood is a recommended part of follow-up to detect recurrence of colorectal cancer following primary curative treatment. There is substantial clinical variation in the cut-off level applied to trigger further investigation.
OBJECTIVES
To determine the diagnostic performance of different blood CEA levels in identifying people with colorectal cancer recurrence in order to inform clinical practice.
SEARCH METHODS
We conducted all searches to January 29 2014. We applied no language limits to the searches, and translated non-English manuscripts. We searched for relevant reviews in the MEDLINE, EMBASE, MEDION and DARE databases. We searched for primary studies (including conference abstracts) in the Cochrane Central Register of Controlled Trials (CENTRAL), in MEDLINE, EMBASE, and the Science Citation Index & Conference Proceedings Citation Index - Science. We identified ongoing studies by searching WHO ICTRP and the ASCO meeting library.
SELECTION CRITERIA
We included cross-sectional diagnostic test accuracy studies, cohort studies, and randomised controlled trials (RCTs) of post-resection colorectal cancer follow-up that compared CEA to a reference standard. We included studies only if we could extract 2 x 2 accuracy data. We excluded case-control studies, as the ratio of cases to controls is determined by the study design, making the data unsuitable for assessing test accuracy.
DATA COLLECTION AND ANALYSIS
Two review authors (BDN, IP) assessed the quality of all articles independently, discussing any disagreements. Where we could not reach consensus, a third author (BS) acted as moderator. We assessed methodological quality against QUADAS-2 criteria. We extracted binary diagnostic accuracy data from all included studies as 2 x 2 tables. We conducted a bivariate meta-analysis. We used the xtmelogit command in Stata to produce the pooled estimates of sensitivity and specificity and we also produced hierarchical summary ROC plots.
MAIN RESULTS
In the 52 included studies, sensitivity ranged from 41% to 97% and specificity from 52% to 100%. In the seven studies reporting the impact of applying a threshold of 2.5 µg/L, pooled sensitivity was 82% (95% confidence interval (CI) 78% to 86%) and pooled specificity 80% (95% CI 59% to 92%). In the 23 studies reporting the impact of applying a threshold of 5 µg/L, pooled sensitivity was 71% (95% CI 64% to 76%) and pooled specificity 88% (95% CI 84% to 92%). In the seven studies reporting the impact of applying a threshold of 10 µg/L, pooled sensitivity was 68% (95% CI 53% to 79%) and pooled specificity 97% (95% CI 90% to 99%).
AUTHORS' CONCLUSIONS
CEA is insufficiently sensitive to be used alone, even with a low threshold. It is therefore essential to augment CEA monitoring with another diagnostic modality in order to avoid missed cases. Trying to improve sensitivity by adopting a low threshold is a poor strategy because of the high numbers of false alarms generated. We therefore recommend monitoring for colorectal cancer recurrence with more than one diagnostic modality but applying the highest CEA cut-off assessed (10 µg/L).