PURPOSE
The prognostic and predictive value of intrinsic subtypes in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer treated with endocrine therapy and ribociclib (RIB) is currently unknown. We evaluated the association of intrinsic subtypes with progression-free survival (PFS) in the MONALEESA trials.
METHODS
A retrospective and exploratory PAM50-based analysis of tumor samples from the phase III MONALEESA-2, MONALEESA-3, and MONALEESA-7 trials was undertaken. The prognostic relationship of PAM50-based subtypes with PFS and risk of disease progression by subtype and treatment were evaluated using a multivariable Cox proportional hazards model, adjusting for age, prior chemotherapy, performance status, visceral disease, bone-only metastases, histological grade, number of metastatic sites, prior endocrine therapy, and de novo metastatic disease.
RESULTS
Overall, 1,160 tumors from the RIB (n = 672) and placebo (n = 488) cohorts were robustly profiled. Subtype distribution was luminal A (LumA), 46.7%; luminal B (LumB), 24.0%; normal-like, 14.0%; HER2-enriched (HER2E), 12.7%; and basal-like, 2.6% and was generally consistent across treatment arms and trials. The associations between subtypes and PFS were statistically significant in both arms ( < .001). The risks of disease progression for LumB, HER2E, and basal-like subtypes were 1.44, 2.31, and 3.96 times higher compared with those for LumA, respectively. All subtypes except basal-like demonstrated significant PFS benefit with RIB. HER2E (hazard ratio [HR], 0.39; < .0001), LumB (HR, 0.52; < .0001), LumA (HR, 0.63; = .0007), and normal-like (HR, 0.47; = .0005) subtypes derived benefit from RIB. Patients with basal-like subtype (n = 30) did not derive benefit from RIB (HR, 1.15; = .77).
CONCLUSION
In this retrospective exploratory analysis of hormone receptor-positive and human epidermal growth factor receptor 2-negative advanced breast cancer, each intrinsic subtype exhibited a consistent PFS benefit with RIB, except for basal-like.