Objective
Extended-field radiotherapy (EFRT) with concurrent chemotherapy represents standard treatment in cervical cancer patients with para-aortic lymph nodal (PALN) metastasis. While EFRT with Intensity Modulated RT (IMRT) has been demonstrated to reduce toxicities, the dose thresholds for minimizing acute toxicity is not clear. The present study was undertaken to report the early toxicity with extended-field intensity-modulated radiotherapy (EF-IMRT) for carcinoma of the cervix in our cohort of patients and determine dose-volume parameters that predict ≥grade II haematological toxicity and diarrhoea.
Methodology
This was a retrospective study of consecutive cervical cancer patients with PALN metastasis treated with EF-IMRT. Patients received rotational IMRT +/- neoadjuvant chemotherapy (NACT) and/or concurrent chemotherapy (45-50 Gy/25#/5 weeks) followed by high-dose rate brachytherapy. Acute haematological and gastrointestinal toxicity (diarrhoea and vomiting) was correlated with doses received by bowel and marrow. Receiver operator characteristics curves were used for deriving thresholds that predict for increased toxicity and tested on univariate and multivariate analysis. Finally, disease free and overall survival (DFS and OS) was calculated.
Results
A total of 43 patients were included. One-fourth of the patients (11/43) received NACT and 88% received concurrent chemotherapy. Within the upfront EF-IMRT cohort, 22.6% and 9.7% patients developed grade ≥III haematological (HT) and gastrointestinal (GI) toxicity respectively, with an increase in HT (≥ grade III HT =67%) in patients receiving NACT (p = 0.007). In the entire cohort bone marrow Volume receiving 10 Gy (V10>) 90% correlated with an increase in ≥ grade III HT (p = 0.05). No dose volume thresholds could be validated for GI toxicity. The OS and DFS at 2 years was 56% and 54%, respectively.
Conclusion
EF-IMRT is a feasible option for cervical cancer patients with PALN involvement and is associated with acceptable grade III toxicity. Future studies need to focus on minimizing HT toxicity.