International journal of radiation oncology, biology, physics 2010-06-01
Incidental testicular irradiation from prostate IMRT: it all adds up.   
ABSTRACT
PURPOSE
To identify the technical aspects of image-guided intensity-modulated radiation therapy (IMRT) for localized prostate cancer that could result in a clinically meaningful incidental dose to the testes.
METHODS AND MATERIALS
We examined three sources that contribute incidental dose to the testes, namely, from internal photon scattering from IMRT small field and large pelvic nodal fields with 6 or 15 MV, from neutrons when >10-MV photons are used, and from daily image-guided fiducial-based portal imaging. Using clinical data from 10 patients who received IMRT for prostate cancer, and thermo-luminescent dosimeter measurements in phantom, we estimated the dose to the testes from each of these sources.
RESULTS
A mean testicular dose of 172 and 220 cGy results from internal photon scatter for pelvic nodal fields and 68 and 93 cGy for prostate-only fields, for 6- and 15-MV energies, respectively. For 15-MV photon energies, the mean testicular dose from neutrons is 60 cGy for pelvic fields and 31 cGy for prostate-only fields. From daily portal MV image guidance, the testes-in-field mean dose is 350 cGy, whereas the testes-out-of-field scatter dose is 16 cGy. Dosimetric comparisons between IMRT using 6-MV and 15-MV photon energies are not significantly different. Worst-case scenarios can potentially deliver cumulative incidental mean testicular doses of 630 cGy, whereas best-case scenarios can deliver only 84 cGy.
CONCLUSIONS
Incidental dose to the testes from prostate IMRT can be minimized by opting to restrict the use of elective pelvic nodal fields, by choosing photon energies <10 MV, and by using the smallest port sizes necessary for daily image guidance.

Related Questions