Clinical lung cancer 2023 Nov 08
Personalized Accelerated ChEmoRadiation (PACER) for Lung Cancer: Protocol for a Bayesian Optimal Phase I/II Trial.   
ABSTRACT
INTRODUCTION
Prior attempts to escalate radiation dose for non-small cell lung cancer (NSCLC) have not improved survival. Given the high risk for cardiopulmonary toxicity with treatment and heterogenous presentation of locally advanced NSCLC, it is unlikely that a single dose regimen is optimal for all patients. This phase I/II trial aims to evaluate a novel treatment approach where the level of accelerated hypofractionation is determined by the predicted toxicity from dose to organs at risk (OARs).
METHODS
Patients ≥ 18 years old with lung cancer planned for fractionated radiotherapy to the lung with concurrent chemotherapy will be eligible. Radiation therapy (RT) will be delivered to a total dose of 60 to 66 Gy in 30, 25, or 20 fractions depending on the ability to meet constraints to key organs at risk including the lungs, heart, and esophagus. The primary endpoint is high grade pulmonary, esophageal, or cardiac toxicity. A Bayesian optimized design is used to determine stopping boundaries and evaluate the primary endpoint.
CONCLUSION
PACER will evaluate the safety and feasibility of personalized accelerated chemoradiotherapy for lung cancer.

Related Questions

Based on results from Zhang et al., PMID 38631536. Would we select patients based on planned lung V20 to avoid excess toxicity? Any further considerat...