Cancer Discov
STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.   
ABSTRACT
is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that (KL) or (KP) comutations define distinct subgroups of -mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups ( < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with -mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free ( < 0.001) and overall ( = 0.0015) survival compared with ; LUAC. Among 924 LUACs, alterations were the only marker significantly associated with PD-L1 negativity in TMB LUAC. The impact of alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In -mutant murine LUAC models, loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify alterations as a major driver of primary resistance to PD-1 blockade in -mutant LUAC. This work identifies alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in -mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. .

Related Questions

Some retrospective data reports that STK11 (AKA LKB1) makes NSCLC resistant to immunotherapy. 


Patient with initially stage IIIC right sided colon cancer s/p resection found to have metastatic disease prior to starting adjuvant therapy. MSI-H an...